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Introduction 
 
In general, processors aim to maximize their profit by operating up to the point where their marginal 
cost equals their marginal revenue.  This is challenging to do when supply and demand are volatile, 
which is a dynamic often observed in commodity markets.  Common optimization planning models can 
address these scenarios by forecasting sales prices and customer demand, then running iterative 
algorithms over the data to generate the production plan that maximizes profit at a point in time. 
However, these production plans can be highly reactive as product price forecasts and other inputs 
change.  This paper examines an approach to optimizing physical production decisions (“make”) that 
considers risk, specifically in situations where: 
 

1. The processor/refiner converts one raw input into many output combinations.  For example, milk 
gets turned into a set of products, such as a combination of cheese and whey protein; 
 

2. The processor is constrained by the supply of the raw input.  These constraints could arise from 
geographic supply limitations, regulation, or agreements with suppliers; 
 

3. The processor has plant capacity limitations and cannot convert the raw input into only one 
product-mix (that is, some undesirable products may need to be made due to the 
location/availability of physical refining assets); 
 

4. Processors may be forced to make certain products, regardless of their margins, due to contracts 
with customers; or 
 

5. Processors make products that either cannot be hedged or that do not have an appropriate 
liquid hedging instrument. 

 
This report investigates an alternative approach to optimizing make using mean-variance analysis. 
Markowitz’s mean-variance analysis is a well-known method for asset portfolio optimization that 
considers both risk and return (Markowitz, 1952).  By applying this framework, an alternative approach 
to commonly used optimization planning models is taken.  It is hypothesized that the advantages in this 
framework are a more consistent make over the long term and less volatile returns.  The following 
sections discuss a method for adapting the Markowitz theorem to a constrained processor situation 
where the processor takes a raw input and has the option to refine it into many products, and finally an 
example is presented. 
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Method 
 
Markowitz’s mean-variance analysis provides the portfolio weightings, wi, for asset, 𝑖𝑖, that maximize the 
expected excess return per unit of standard deviation.  These weightings are calculated from the 
returns, Ri, and covariance, ρi,j, of assets 𝑖𝑖 and 𝑗𝑗.  In this application 𝑖𝑖 and 𝑗𝑗 are streams and Ri is the 
expected average return of the stream, 𝑖𝑖.  Absent any constraints, one unit of raw input collected by a 
commodity processor can be transformed into any stream of products.  Consider a stream as the set of 
products made by a recursive procedure utilizing the raw input and the subsequent by-products of 
production.  As an example, when skim milk is extracted from raw milk, a fat-concentrated liquid 
remains.  From this, the fat can be extracted and butter produced, leaving butter milk as the remaining 
by-product.  Therefore, an example of a stream is:  𝑖𝑖 = {𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚}. 
 
The value of a stream can be calculated at any point in time.  This value is the sum of the yield-weighted 
prices of all component products in the stream minus their yield-weighted marginal production costs. 
Return, Ri, is the percentage change in value of the stream from period 𝑡𝑡 − 1 to period 𝑡𝑡, which is 
shown in the equation below:  

Ri =  ∑ 𝛼𝛼𝑖𝑖,𝑘𝑘𝑘𝑘
(𝑃𝑃𝑘𝑘,𝑡𝑡−𝐶𝐶𝑘𝑘,𝑡𝑡)−(𝑃𝑃𝑘𝑘,𝑡𝑡−1−𝐶𝐶𝑘𝑘,𝑡𝑡−1)

(𝑃𝑃𝑘𝑘,𝑡𝑡−1−𝐶𝐶𝑘𝑘,𝑡𝑡−1)
  

where Pk,t is the price of the commodity, 𝑘𝑘 ∈ 𝑖𝑖 at time 𝑡𝑡, and 𝐶𝐶𝑘𝑘,𝑡𝑡 is the variable production cost of 𝑘𝑘 at 
time 𝑡𝑡.  𝛼𝛼𝑖𝑖,𝑘𝑘 is a yield coefficient, 𝑘𝑘 ∈ 𝑖𝑖, such that if the processor takes one unit of the raw input they 
will make 𝛼𝛼𝑖𝑖,𝑘𝑘 units of the commodity 𝑘𝑘.  Likewise, in this scenario ρi,j becomes the covariance between 
the returns of streams 𝑖𝑖 and 𝑗𝑗.  Next, the processor’s constraints are discussed. 
 
If the processor operates in a commodity where the refined products do not have a liquid financial 
market or if the processor does not have access to the financial markets then the solution is constrained 
to have weightings wi ≥ 0 for each stream, 𝑖𝑖.  This is important as the Markowitz optimal portfolio may 
suggest that the processor should short some streams. 
 
Processors also have capacity and production constraints.  Capacity restrictions, such as physical refining 
limitations, are likely to cause minimum and maximum output constraints for certain products. 
Production constraints may force the processor to make some products regardless of whether this is 
optimal in the mean-variance sense.  The minimum make, 𝑚𝑚𝑘𝑘, and maximum make, 𝑀𝑀𝑘𝑘, are dependent 
on the unique situation of a given processor.  That is, the make 𝑣𝑣𝑘𝑘  ,  𝑚𝑚𝑘𝑘 ≤  𝑣𝑣𝑘𝑘 ≤ 𝑀𝑀𝑘𝑘.  For example, 
supply agreements may force the make of the downstream product 𝑘𝑘 to be greater or equal to some 
minimum make, 𝑚𝑚𝑘𝑘; and plant capacity constraints may force the make of 𝑘𝑘 to be less than or equal to 
some maximum make, 𝑀𝑀𝑘𝑘.  
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Once the relevant constraints have been established the optimal portfolio can be computed using an 
optimizer such as the Excel Solver.  The optimizer would assign a portion of the total raw input, 𝑈𝑈, to the 
streams.  The make of product 𝑘𝑘 in a stream 𝑖𝑖 is, 
 

𝑣𝑣𝑘𝑘,𝑖𝑖 = 𝑈𝑈βi 𝛼𝛼𝑖𝑖,𝑘𝑘. 

where 𝛽𝛽𝑖𝑖 is the proportion of raw input assigned to stream 𝑖𝑖 such that 1 =  ∑ 𝛽𝛽𝑖𝑖𝑖𝑖  (that is 100% of the 
raw input is assigned to a stream.)  It follows that the total make across all streams is, 𝑣𝑣𝑘𝑘 = ∑ 𝑣𝑣𝑖𝑖,𝑘𝑘𝑖𝑖 , 
which must be within the make constraints. 
 
The optimizer must allocate the constrained raw input across the streams such that it maximizes the 
Sharpe ratio.  It is important to note that 𝛽𝛽𝑖𝑖 is not analogous to the asset weightings in mean-variance 
analysis.  In this framework, the weights, wi, represent the proportion of the total revenue that is 
expected to come from each stream,  
 

𝑤𝑤𝑖𝑖 =  ∑ 𝑃𝑃𝑘𝑘𝑣𝑣𝑖𝑖,𝑘𝑘𝑘𝑘
∑ 𝑃𝑃𝑘𝑘 ,𝑣𝑣𝑘𝑘𝑘𝑘
�  

𝜇𝜇 = 𝒘𝒘𝑇𝑇𝑹𝑹, 

𝜎𝜎2 = 𝒘𝒘𝑇𝑇𝝆𝝆 𝒘𝒘,  

Sharpe ratio = 𝜇𝜇−𝑟𝑟 
𝜎𝜎

, 

where 𝒘𝒘 is the vector of weights, 𝑹𝑹 is the vector of returns, 𝝆𝝆 is the stream covariance matrix, and 𝑟𝑟 is the risk-
free rate. 

An Example:  Applying This Method to a Lifelike Dairy Company 
 
Figure 1  
Sample Yield Table Applied in Dairy Processor Example 
 

 
 
 

The above yield table was derived using data from Sneddon et al. (2015) and Bylund (2003).  Using an 
extended version of this table, a historical time series of stream values was calculated with the time 
period of the underlying proprietary price series running from July 2005 through July 2017.  The period-



A Mean-Variance Approach for Optimizing Physical Production Decisions 

GLOBAL COMMODITIES APPLIED RESEARCH DIGEST | Advisory Council Analyses | www.jpmcc-gcard.com | Summer 2019 
 

61 

to-period percentage change in these stream values was taken as the return time series to be used in 
Markowitz’s mean-variance framework, Ri, and the annual variance-covariance matrix between streams 
was calculated.  
 
In the optimal case no further constraints would be applied from this point onward.  For a set of product 
prices chosen by the processor, the model would calculate the weight in each stream required to get the 
processor to the tangency portfolio (the orange point in the chart in Figure 2 on the next page) where 
the Sharpe Ratio is maximised.  When the model was run with only a raw input constraint and no make 
constraints, a Sharpe ratio of 0.63967 was achieved.  This is 0.10% below the theoretically optimal 
Sharpe ratio of 0.64034.  It should also be noted that this solution involved shorting some products.  
 
Setting Up the Minimum and Maximum “Forced Make” Production Constraints 

The upper production constraints, 𝑀𝑀𝑘𝑘, for each product were estimated by, 𝑀𝑀�𝑘𝑘, using the historical 
maximum production for each product in a given month scaled up by 10%.  This upper bound is 
theoretically less than the maximum refining capacity of the dairy company.  However, this estimation 
was used because milk refining is geographically constrained and therefore the maximum refining 
capacity is not a realistic upper bound. 
 
The lower bound, 𝑚𝑚�𝑘𝑘, assumed no forward sales contracts and estimated the minimum make under the 
assumption that milk was geographically constrained.  It is assumed that all products had infinite 
demand, the prices of all alternative products were at their 95th percentile, and that milk collections 
were 15% below forecast.  In other words, the forced make of an undesirable product in a year where 
milk solids collected were low was considered.  
 
To calculate the constrained optimal portfolio (the blue point in the chart in Figure 2), Excel’s GRG 
Nonlinear Solver was used.  The Solver was set to find the make, 𝑣𝑣𝑘𝑘, of each product that led to the set 
of weights, wi, which maximized the Sharpe ratio of the portfolio with the constraint  𝑚𝑚�𝑘𝑘 ≤  𝑣𝑣𝑘𝑘 ≤ 𝑀𝑀�𝑘𝑘 
applied.  This procedure was run several times and with varying initial criteria and mutation rates; each 
run resulted in the same optimal output. 
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Figure 2 
Efficient Frontier Output as Applied to a Dairy Processor 
 

 
 
 

Conclusion 
 
This paper presents a risk aware framework for physical production planning for a commodity processor 
that steps away from traditional optimization approaches.  This approach treats production decisions as 
analogous to a fund manager’s asset selections where the processor’s universe of assets is the streams 
of products that it can make.  By applying mean-variance analysis it is expected that a processor will be 
more fairly rewarded for the risk implicit in their production plan. 
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