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Introduction 
 
This paper studies the price volatility behavior of the oil markets, updating our previous research on 
issues related to this topic in Lee and Zyren (2007).  But before covering our new study, we will briefly 
review why oil prices can be so volatile along with the history of highly volatile episodes in the oil 
markets that have occurred since the mid-1980s. 
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Generally speaking, changes in price can be large in the oil market since the underlying demand and 
supply curves are so price-inelastic that shocks to supply or demand will be immediately reflected in the 
price.  Regarding research on this subject, there is no consensus on whether supply shocks or demand 
shocks are more prone to causing changes in prices.  The different magnitude in price response caused 
by these shocks varies over time, and an increased price caused by unexpected supply restrictions or 
geopolitical reasons has tended to be transitional. 
 
According to a number of academic studies, speculative financial activity in the oil markets, and 
commodity markets in general, can have some influence on oil prices, but at least historically, there have 
not been sustained price changes caused by such activity.  Kilian and Lee (2014) explained and 
empirically demonstrated, for example, that the 2003-08 oil price surge was mainly influenced by 
increases in demand, driven largely by the unexpected economic growth of emerging market countries.  
Prices can also be affected by unexpected fundamental information or announcements.  However, such 
price responses have been very short lived and have not had much long-term impact on volatility. 
 
Figure 1 on the next page shows the percent returns and spot price movement for nominal West Texas 
Intermediate (WTI) crude oil prices from January 1990 to November 2018.  The weekly percent returns 
show that the volatility of returns varies over time and, as we expect, the price returns exhibit volatility 
clustering.  This implies volatility shocks today could influence the volatility many periods into the future.  
The nominal prices have historically shown substantial variations, ranging from a low monthly average of 
$11 in December 1998 to $134 in July 2008.  On July 14, 2008, the WTI price registered a level of 
$145.16, the highest price in history.  The price movements in the 1990s were relatively smooth 
although we had some spikes and downturns with the uncertainty surrounding Gulf War I (1990-1991), 
the Asian Financial Crisis (1997), and afterwards with the Dot-com Crash (2000-2002).  In comparison, oil 
price movements have widely varied by a larger degree since 2004.  There are two noticeable price 
swings in the oil market after 2004.  One occurred during the Global Financial Crisis in 2008 when the oil 
price peaked at $145 in July 2008 before plummeting to $30 by the end of December 2008, and the 
other event is the oil price collapse, which took place from the second part of 2014 to early 2016.  In the 
latter episode, the price went as high as $108 in June 2014, followed by a decline to $26 in February 
2016.   
 
We can compare the price declines during these two events with the decline in oil prices that occurred 
in 1985-1986 when members of the Organization of the Petroleum Exporting Countries (OPEC) reversed 
earlier production cuts.  There are different reasons for the various price collapses.  The 1985-1986 price 
collapse was mainly supply-driven whereas the drop in 2008 was mostly due to demand-side factors.   
 
In contrast, the 2014-2016 price collapse appeared to be due to a mix of these two factors.  On the 
supply side, a failure to come to agreement amongst OPEC and non-OPEC producers to control oil 
production occurred in November 2014, and which was described in Jesse (2017).  On the demand side, 
slowing growth in emerging markets, noticeably in China, also took its toll later on oil prices.   
 
  

http://www.jpmcc-gcard.com/wp-content/uploads/2018/01/Page-98-110-GCARD-Winter-2017-EAB-Jesse-010418.pdf
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Figure 1 
Weekly WTI Price and Return   
 

 
 
 

These types of rapid fluctuations have become of great concern to individual consumers, firms, 
policymakers and society in general.  For each stakeholder, there are different concerns regarding price 
volatility.  For example, from an oil producer’s point of view, volatility, whether persistent or transitory, 
could discourage fixed capital investment due to uncertainty regarding the price path.  From a trader’s 
point of view, accurate predictions of price volatility are crucial for arbitrage opportunities since this 
variable is a key determinant for derivatives valuation.  With respect to these concerns, Lee and Zyren 
(2007) analyzed the volatility interactions between crude oil and petroleum products as well as the 
magnitude of price volatility in these related markets.  The specific interest of this study was to analyze 
price reactions in both crude oil and the petroleum product markets when OPEC’s crude oil pricing 
behavior changed.  This study also hypothesized that the gasoline and heating oil markets would have 
higher price volatility since these markets have their own set of market factors that would lead to this 
effect.  The study concluded that 1) volatility is higher when OPEC intervenes in the oil market; 2) the 
price volatility of petroleum products is higher than crude oil; and 3) price volatility for near-month 
futures contracts is higher than more distant futures contracts. 
 
In our current paper, we are revisiting the fundamental question as to whether the oil price volatility 
structure is stable over time.  This analysis will give us a chance to reevaluate how the composition of 
the underlying supply, demand, and other exogenous shocks impacts the oil price differently.  Both 
shocks to price and price volatility could be much different today than in earlier periods.  Because the 
effects of shocks change over time and, given technological progress and changing market dynamics, 
there may be different price impacts resulting from supply or demand shocks as compared to the past.  
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Understanding the structure of volatility should help us with uncertainty management.  One may want 
to know whether volatility is persistent or transitory and to know its magnitude.  If volatility is high and 
persistent, it may lead firms to rely more heavily on hedging operations and other types of risk 
management and to place more emphasis on the evaluation of investments in the context of 
uncertainty.  Thus, it is imperative to understand the behavior of crude oil price volatility, its magnitude 
and duration, as well as its economic implications. 
 
This study on crude oil price volatility is organized as follows.  The following section describes the data 
and empirical methodologies used to estimate volatilities conditioned on types of past information, i.e., 
“conditional volatilities.”  The next section summarizes the estimation results and analyzes conditional 
volatilities in different periods, including a discussion of the analysis’ implications.  Concluding remarks 
are in the final section. 
 
Data and Methodology 
 
In order to have a comprehensive understanding of WTI crude oil volatility behavior, we obtained the 
end-of-week closing prices for the spot and futures markets, including 1-month, 3-month, and 6-month 
futures contracts, for WTI crude oil.1  The spot price series were obtained from Reuters while the New 
York Mercantile Exchange (NYMEX) prices were obtained from Bloomberg.  The sample period studied is 
from January 1990 to November 2018.2  Table 1 on the next page displays descriptive statistics for both 
weekly nominal WTI prices and returns for the full period (January 1990 to November 2018), Period 1 
(January 1990 to December 2003), and Period 2 (January 2004 through November 2018).   
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Table 1 
Descriptive Statistics for Weekly Nominal WTI Prices and Returns January 1990 through November 2018 

 

 
 

 

Table 1 shows that the variation of the nominal price for Period 2 is much higher than for Period 1.  The 
price variation measured by standard deviation in Period 2, which includes the Global Financial Crisis 
and its aftermath, is four times higher than that of Period 1, with a standard deviation of $5.61 and 
$23.00 in Period 1 and Period 2, respectively.  The price range in each corresponding period, Period 1 
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and Period 2, is $28.77 and $115.87, respectively.  Several noteworthy episodes during Period 2 
contributed to such a large variation in price (as touched upon in the Introduction), namely:  1) the 
demand shock resulting from the Global Financial Crisis in 2008; 2) the supply shock arising from OPEC’s 
decision not to steady the oil markets in late 2014; and 3) the demand shocks due to slowing growth in 
emerging economies in late 2015.  In the 2008 episode, within a 6-month period, from the beginning of 
July to the end of December, WTI spot price declined 77% before rebounding.  The declining price 
journey in the second episode stretched for a year and a half with the price decreasing by 72% from July 
2014 to February 2016.  These events manifestly led to a large variation in price as compared with 
Period 1.   
 
We will now turn to formalizing our study of crude oil price volatility with the use of sophisticated 
statistical models.  Since the seminal works of Engle (1982) and Bollerslev (1986), autoregressive 
conditional heteroskedasticity (ARCH) and generalized autoregressive conditional heteroskedasticity 
(GARCH) models have found extraordinarily wide use.  GARCH models have been very successful at 
modeling time-varying volatility in financial time series, and they seem to be as good as that of more 
complex models.3  In the petroleum markets, Lee et al. (1995), Sadorsky (1999), Pindyck (2004), Lee and 
Zyren (2007), and Salisu and Fasanya (2013) used GARCH models to estimate oil price volatility.  The 
GARCH (p, q) model used in this study is formulated as follows: 
 
 ttR εµ +=  (1) 

 2 2 2

1 1

p q

t i t i j t j
i j

σ ω α ε β σ− −
= =

= + +∑ ∑  (2) 

The mean equation, Equation (1), expresses oil price returns as a random walk process with tε  as the 
error term.  The variance equation, Equation (2), uses the error term, tε , of the mean equation to help 
explain total model variance.  In the variance equation, the conditional variance at time t, 2

tσ , is 
specified as a function of three terms:  the mean, ω ; ARCH terms representing the effect of news in the 
previous period(s) on current volatility, 2

1−tε ; and GARCH terms representing the effect that previous 
periods’ forecast variance(s) have on current volatility, 2

1−tσ .  The GARCH (1, 1) model is utilized to 
estimate the conditional volatility for our data series in all three periods.4  The methodology is based on 
the assumption that the conditional volatility of the return in oil prices is affected symmetrically by both 
positive and negative innovations.  This means we treat any impact equally, whether it is positive or 
negative to the price.5 
 
Similar to financial data series, energy market volatilities in a period of relative tranquility are often 
followed by periods of higher volatility.  For that reason, an assumption of constant variance over time 
for the return of oil prices is not appropriate.  Thus, to help understand certain aspects of oil price 
volatility, we utilized the GARCH model for estimating the conditional variance of returns, which allows 
the conditional variance to be time-variant.  However, one must note the usual reservations regarding 
this model.  Our univariate approach does not take into consideration the comovements of returns.  To 
have a better understanding of relevant comovements, one can use the multivariate GARCH (MGARCH) 
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models, which enable the estimation of the relative magnitude of volatilities, systematic information 
(GARCH effect) and unsystematic information (ARCH effect) in any given time period.  While the 
volatility interaction in MGARCH is an important issue, it is out of scope for this study and we will focus 
on conditional volatility comparisons only. 
 
Estimation, Results and Implications 
 
Our estimated results can illuminate characteristics of oil price volatility in the spot and futures markets 
and in different market conditions (Period 1 vs. Period 2).  If the sum of ARCH (α) and GARCH (β) 
coefficients is less than one (α + β < 1) then the time series exhibit a mean-reversion process.  When the 
sum of these coefficients is equal to one (α + β = 1) then it is said that the time series follows a random 
walk.  The estimation results in Table 2 on the next page reveal that the sum of ARCH and GARCH 
coefficients is less than one (α + β < 1) for both spot and futures contracts in both periods, confirming 
that oil price volatilities revert back to their historical value after a certain time period.  This mean 
reversion in volatility also means that there is a normal level of volatility to which volatility will 
eventually return.   
 
Given that oil price volatilities are mean-reverting, we examine their half-lives over our sample periods.  
The half-life of volatility measures the average time period for the volatility to return back to its mean 
value in a long-run horizon.  It is a measure of volatility persistence.  A volatility study of energy markets 
by Pindyck (2004) concluded that changes in volatility are short-lived with a half-life of 5 to 10 weeks 
and that volatility has a small positive time trend, which implies little impact on firms’ investment 
activities or on the economy.  The half-life volatility in a GARCH specification is calculated by: 
 

 

1 1

log(0.5)Half life
log

GARCH p q

i j
i j
α β

= =

=
 

+ 
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Our calculations for this specification are also shown in Table 2 on the next page.  The conditional 
variance estimated using a GARCH specification was found to exhibit larger GARCH (moving average) 
effects than ARCH (autoregressive) effects in all markets and periods.  This means that previous period 
information about observed volatility (ARCH effect) has had much less of an impact on conditional 
volatility than the previous period’s forecast of volatility (GARCH effect).  Conceptually, the former 
measure maps into the effect of news or events during the previous period on conditional volatility 
while the latter measure maps into the effect of systematic information on conditional volatility. 
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The speed of mean reversion as calculated by the half-life method reveals that the half-life for Period 1 
is about 12 weeks while for Period 2, the half-life is about 18 weeks, as shown in Table 2 below.  This 
indicates that there is more of a persistent volatility condition in the second period as compared to the 
first period.  We believe this persistence is mainly due to two events:  the 2008 Global Financial Crisis 
and the 2014-2016 oil price collapse.   
 
Table 2 
Crude Oil – Volatility Estimation Results 
 

 
 

Note:  Z-statistics are in parentheses. 
 

 



Revisiting Price Volatility Behavior in the Crude Oil Market 

GLOBAL COMMODITIES APPLIED RESEARCH DIGEST | Editorial Advisory Board Contribution | www.jpmcc-gcard.com | Summer 2019 
 

79 

We will now examine implied volatility in the crude oil futures market.  Implied volatility provides a 
measure of market participants’ expectations of uncertainty regarding future price movements.  This 
measure is also known as a proxy for investor sentiment.  Although crude oil and stock markets often 
move independently because of different factors affecting each market, the price volatility of these 
markets can often be positively correlated.  There are four noticeable market uncertainty spikes in oil 
implied volatility (OVX), which took place in 2008, 2011, 2014-16, and in 2018.  Reviewing Figure 2 
below, we see that the stock market implied volatility (VIX) spiked with similar magnitudes as the OVX 
during the Global Financial Crisis in 2008 and the Libyan crisis of 2011.  But the OVX’s pattern during the 
oil price collapse in 2014-2016 is very different from what the equity markets experienced:  the OVX’s 
spikes are much higher than those of the VIX.  The higher implied volatility in the oil market as compared 
with equity volatility was also witnessed in November 2018 when the market became concerned with 
the slowing growth in demand and oversupply issues.   
 
Figure 2 
Weekly VIX and OVX Indices (in Percent) 
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Figure 3 
Weekly WTI Historical and Conditional Volatility Comparison 
 

 
 
 

Figure 3 above provides a comparison between the historical and conditional volatilities of weekly crude 
oil returns for the entire sample from January 1990 to November 2018.  The estimated conditional 
volatility captures major events in the sample period; thus, it appears that the model is reasonable and 
acceptable.  However, the conditional volatility fails to capture a number of the weekly spikes, especially 
for the 2014-2016 period.  During this period, the pattern and size of the OVX is about the same as the 
historical volatility, but the estimated conditional volatility did not exhibit the magnitude of this 
uncertainty.  The ARCH effect in the conditional volatility is also diminishing in the second period relative 
to the first one.  This may be due to the fact that with the advent of 24-hour electronic trading and 
technology improvements (e.g., algorithmic trading), the volatility reaction to surprise shocks has 
become quick and diminishing (Ederington et al. (2019)).  We may need to refine the specification or use 
other models to deal with this issue. 
 
Conclusion 
 
The goal of this paper has been to provide an updated analysis of crude oil volatility, incorporating more 
recent data than our original work in Lee and Zyren (2007).  In our current paper, we compared the 
behavior of oil price volatility during two different time horizons:  1990 to 2003 and 2004 to 2018.  We 
empirically examined the conditional volatilities and volatility persistence in the oil markets during very 
eventful times.  Our results suggest two important findings:  1) the component of oil price volatility due 
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to current information has diminished more quickly than previously while 2) the systematic information 
component of oil price volatility has persisted longer than previously. 
 
Another way of framing our results is that while the price reactions due to current news or events have 
not been as important as in the 1990s or early 2000s, we also documented an increasing pattern of 
volatility persistence in the more recent data.  The persistence of price volatility in the oil market may 
negatively impact business investment decisions and/or economic activity as a whole.  To build 
confidence in our results, though, we recommend that researchers use different specifications and 
models than our GARCH specification in studying these issues. 
 
Although this study documents that the recent level of volatility is higher than that of earlier in the 
decade,6 we have not addressed what has caused this phenomenon.  It is an important issue to have a 
better understanding of the drivers of volatility behavior in the oil market.  There may be several or 
many different reasons for the change in price volatility conditions.  The candidate hypotheses include 
fundamental changes in market conditions such as the shale revolution, technology advancement, and 
geopolitics, but a definitive answer awaits future research.   
 
 

Endnotes 
 
1 Lee and Zyren (2007) used daily data for WTI, conventional and reformulated (RFG) gasoline, and heating oil in both New 
York Harbor (NYH) and U.S. Gulf Coast (USG).  
 
2 The data period in Lee and Zyren (2007) was from January 1990 to May 2005. 
 
3 Hansen and Lunde (2005) argue that the best volatility models do not provide a significantly better forecast than the 
GARCH model.  See Poon and Granger (2003) for a comprehensive review of alternative methods for estimating and 
forecasting volatility. 
 
4 The Lee and Zyren (2007) study included a shift variable, capturing a structural break.  Specifically, the shift variable 
indicated how OPEC’s decision to create a new price regime in April 1999 impacted the mean of the conditional volatility.  
However, our main aim in the current study is to see whether volatility behavior has changed in the 2000s with the Global 
Financial Crisis and the oil supply glut period. 
 
5 This assumption is not appropriate when petroleum products prices are evaluated.  Lee and Zyren (2007) applied the 
threshold-GARCH (TARCH) process to estimate the conditional variance for gasoline and heating oil prices, given asymmetric 
responses of petroleum product prices.  They found that the heating oil market and the one-month futures contract in 
gasoline seem to exhibit “leverage effects,” i.e., an asymmetric tendency for volatility.  Ederington et al. (2019) provide a 
survey of the literature on volatility and asymmetric responses of product prices. 
 
6 McNally (2018) also discussed concerns with heightened oil price volatility. 
 
The views expressed in this paper reflect the opinions of the authors only.  It is not meant to represent the position of the 
U.S. Department of Energy or the Energy Information Administration, nor the official position of any staff members.  The 
authors are solely responsible for all errors and omissions.  
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